31 resultados para quantum interaction

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We comment on the recent results [Phys. Rev. B 70, 235314 (2004)] showing the dispersion relations of single-particle and collective excitations in quantum wires in the presence of the Rashba spin-orbit interaction (SOI). We claim that those calculations performed in the absence of SOI, and used as a strong reference to the interacting case, are unlikely to be correct. We show the correct omega-q plane of the system in the absence of Rashba SOI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-energy states of a shallow donor in a GaAs/Ga0.7Al0.3As multiple-quantum-well structure subjected to a magnetic field in the growth direction are studied both theoretically and experimentally. Effects due to higher confinement subbands as well as due to the electron-phonon interaction are investigated. We show that most of the peaks in the infrared photoconductivity spectrum are due to direct transitions from the ground state to the m = +/-1 magnetodonor states associated with the first subband, but transitions to the m = +/-1 states of the third subband are also apparent. The remaining photoconductivity peaks are explained by phonon-assisted impurity transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural and electronic properties of bulk and both oxidized and reduced SnO2(110) surfaces as well as the adsorption process of O-2 on the reduced surface have been investigated by periodic DFT calculations at B3LYP level. The lattice parameters, charge distribution, density of states and band structure are reported for the bulk and surfaces. Surface relaxation effects have been explicitly taken into account by optimizing slab models of nine and seven atomic layers representing the oxidized and reduced surfaces, respectively. The conductivity behavior of the reduced SnO2(110) surface is explained by a distribution of the electrons in the electronic states in the band gap induced by oxygen vacancies. Three types of adsorption approaches of O-2 on the four-fold tin at the reduced SuO(2)(110) surface have been considered. The most exothermic channel corresponds to the adsorption of O-2 parallel to the surface and to the four-fold tin row, and it is believed to be associated with the formation of a peroxo O-2(2-) species. The chemisorption of O-2 on reduced SnO2(110) surface causes a significant depopulation of states along the band gap and it is shown to trap the electrons in the chemisorbed complex producing an electron-depleted space-charge layer in the inner surface region of the material in agreement with some experimental evidences. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric current and the magnetoresistance effect are studied in a double quantum-dot system, where one of the dots QD(a) is coupled to two ferromagnetic electrodes (F-1; F-2), while the second QD(b) is connected to a superconductor S. For energy scales within the superconductor gap, electric conduction is allowed by Andreev reflection processes. Due to the presence of two ferromagnetic leads, non-local crossed Andreev reflections are possible. We found that the magnetoresistance sign can be changed by tuning the external potential applied to the ferromagnets. In addition, it is possible to control the current of the first ferromagnet (F-1) through the potential applied to the second one (F-2). We have also included intradot interaction and gate voltages at each quantum dot and analyzed their influence through a mean field approximation. The interaction reduces the current amplitudes with respect to the non-interacting case, but the switching effect still remains as a manifestation of quantum coherence, in scales of the order of the superconductor coherence length. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723000]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several different methods were used to investigate the vesicle-to-micelle transition induced by the addition of the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) to spontaneously formed vesicle dispersions of dioctadecyldimethylammonium bromide and chloride (DODAX, X = Cl- and Br-). Dynamic light scattering reveals that fast mode micelles are formed upon addition of C12E6. The micellar mode becomes progressively dominant as the C12E8/DODAX molar ratio (R) is increased until the vesicle-to-micelle transition is complete. Turbidity, calorimetry, fluorescence quantum yield, and anisotropy measurements indicate two critical compositions: the first, R-sat, when the vesicle bilayer is saturated with C12E8 and the second, R-sol, which corresponds to the complete vesicle-to-micelle transition. Below R-sat the vesicles swell due to incorporation of the surfactant into the vesicle bilayer, and above R-sat mixed micelles and bilayer structures coexist, the determined R-sat and R-sol range from 0 to 1 and 4 to 6, respectively, depending on the surfactant counterion and the experimental method used. Cryo-transmission electron microscopy micrographs show that when R approximate to 4, micelles coexist with extended bilayer fragments. In pure DODAX (1.0 mM) dispersions, unilamellar vesicles are observed. According to the DSC results, C12E8 lowers the gel-to-liquid crystalline transition temperature, T-m, of DODAX and broadens the main transition peak which disappears around R approximate to 5 and 6 for DODAC and DODAB, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we constructed an energy-dependent point interaction (EDPI) in its most general form in one-dimensional quantum mechanics. In this paper, we show that stationary solutions of the Schrodinger equation with the EDPI form a complete set. Then any nonstationary solution of the time-dependent Schrodinger equation can be expressed as a linear combination of stationary solutions. This, however, does not necessarily mean that the EDPI is self-adjoint and the time-development of the nonstationary state is unitary. The EDPI is self-adjoint provided that the stationary solutions are all orthogonal to one another. We illustrate situations in which this orthogonality condition is not satisfied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled intersubband plasmon-phonon modes are studied in a multisubband parabolic quantum wire at room temperatures. These modes are found by calculating the spectral weight function which is related to the inelastic Raman spectra. We use a 13 subband model. The plasmon-phonon coupling strongly modifies the dispersion relation of the intersubband modes in the vicinity of the optical phonon frequency omega(LO). Extra modes show up as a result of the electron-phonon interaction. We carefully study the density and temperature dependence of these extra modes. We also show that coupled intersubband plasmon-phonon modes should be observed for temperatures as high as 300 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-energy scattering of ortho positronium (Ps) by ortho Ps has been studied in a full quantum mechanical coupled-channel approach. In the singlet channel (total spin s(T) = 0) we find S- and P-wave resonances at 3.35 eV (width 0.02 eV) and 5.05 eV (width 0.04 eV), respectively, and a binding of 0.43 eV of Ps(2). The scattering length for s(T) = 0 is 3.95 Angstrom and for s(T) = 2 is 0.83 Angstrom. The small s(T) = 2 scattering length makes the spin-polarized ortho Ps atoms an almost noninteracting ideal gas which may undergo Bose-Einstein condensation. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we reexamine quantum electrodynamics of atomic electrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji formalism by considering the variation rates of physical observable. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic electrons, discussing the arbitrariness in the statistical functions in second-order bound-state perturbation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a nonholonomous-frame formulation of the general covariance principle, seen as an active version of the strong equivalence principle, an analysis of the gravitational coupling prescription in the presence of curvature and torsion is made. The Coupling prescription implied by this principle is found to be always equivalent to that of general relativity, a result that reinforces the completeness of this theory, as well as the teleparallel point of view according to which torsion does not represent additional degrees of freedom for gravity, but simply an alternative way of representing the gravitational field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the actual state of affairs and future perspectives in the study of a quantum system of a collection of positronium (Ps) atoms. The interaction of a Ps atom with other atoms and molecules and specially with another Ps atom is described in some detail as Ps-Ps interaction should play a crucial role in the dynamics of an assembly of Ps atoms. Using a simple model-exchange potential, we could describe the available experimental results of Ps scattering reasonably well. The present scenario of the observation of Ps2 molecule, Ps Bose-Einstein condensate (BEC) and the annihilation laser from a Ps BEC is presented. Possibilities of a Ps BEC formation via laser cooling of Ps atoms and via Ps formation in cavities are considered and difficulties with each procedure discussed (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim